On Stability of a General Bilinear Functional Equation
نویسندگان
چکیده
Abstract We prove the Hyers–Ulam stability of functional equation $$\begin{aligned}&f(a_1x_1+a_2x_2,b_1y_1+b_2y_2)=C_{1}f(x_1,y_1)\nonumber \\ \nonumber \\&\quad +C_{2}f(x_1,y_2)+C_{3}f(x_2,y_1)+C_{4}f(x_2,y_2) \end{aligned}$$ f ( a 1 x + 2 , b y ) = C 3 4 in class functions from a real or complex linear space into Banach over same field. also study, using fixed point method, generalized $$(*)$$ ? functions. Our results generalize some known outcomes.
منابع مشابه
Intuitionistic fuzzy stability of a quadratic and quartic functional equation
In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملOn a new type of stability of a radical cubic functional equation related to Jensen mapping
The aim of this paper is to introduce and solve the radical cubic functional equation $fleft(sqrt[3]{x^{3}+y^{3}}right)+fleft(sqrt[3]{x^{3}-y^{3}}right)=2f(x)$. We also investigate some stability and hyperstability results for the considered equation in 2-Banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2021
ISSN: ['1420-9012', '1422-6383']
DOI: https://doi.org/10.1007/s00025-021-01447-w